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Web Appendiz

1. Web Appendix A: Proof of the double robustness of the proposed estimator

Recall the proposed estimating equation

D U= S WilYs — ) + uS (1 = W) E(Y; — i)} = 0
=1

=1

When the LCM condition holds but the missing probability model is wrong,

E(Yh - ﬂil’Xi)
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where 7 is the the propensity score for the m-th observation given the observed covariates
X, and response history ffzm The consistency follows from the 0 expectation when regression

coefficients take the true value.
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When the missing probability model is correct but the LCM condition does not hold,
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The consistency follows from the same reason as mentioned above.

2. Web Appendix B: Regularity conditions and proof of Theorem 1

We will show the asymptotic properties of the proposed estimator. To accommodate the
possible dependence between X and T, we assume the following relationship as Rice (1986):
Xijre = mp(Ti5) + oijk, 1 <1< n, 1 < j<m, 1<k < p where the my(-) are functions
with bounded rth derivatives and the p;;, are independent random variables with mean
0 and are independent of the standardized responses. Let A, be a N(= n x m) by p
matrix whose [th column is o = (0111, , O1mis " ** > Onmut)” - Recall that in Section 3, we
denote ¥; = X;(1:(0)), Ay = Ai(pi(0)), by = hi(ui(0),7), X = (XTI, , XI7T with X; =

(Xila"' 7Xim)T7 M = <M1Ta 7ME>T with M’L = (Trila"' 77Tim>T7 0= d'lCLg{Ql, 7Qn}
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with Q; = AiTE,;lE{%hi}Ai, P = MM'QM)"*MTQ, X* = (X;T,---  X;O)7T = (I —
i
P)X, B; = X;TATS Wy — [0 Xy ATS o hi(ps, 7)) - [5:GA(1)) 7 G a(y) and the nota-
tions ), represent (2; evaluated at the true j9, and y. Notations By; and Xg; are defined

in a similar fashion. Let ||-|| be the Euclidean norm. The regularity conditions as given as

follows:

(C.1) The parameter vector 7y is an interior point of the parameter space I' which is a
compact set.

(C.2) pij(y) > c1 >0 for all v € I, for some constant c¢;.

(C.3) %%Gv(%) and = 3" Gi(70)GY ;(70) converges to X, and V; respectively in proba-
bility for some positive-definite matrix >, and V.

(C.4) The rth derivative of go is bounded for some r > 2.

(C.5) The distinct values of {¢;;} form a quasi-uniform sequence that grows dense on [0, 1].

(C.6) There exists some pg such that the estimate of covariance parameters satisfies \/n(p —
p0) = O(1).

(C.7) There exists positive constant ¢y such that 0 < ¢o < v(-) < oo, v(-) and p(-) have
bounded second derivatives and third derivatives respectively.

(C.8) For sufficiently large n, k, (M7 QM) is non-singular, and the eigenvalues of (k,/n)M7* QoM
are bounded away from zero and infinity in probability, where Qg = diag {Q0.1,- -, Qon}-

(C.9) EA, =0 and sup,2E||A,|* < 00, and 1K, — K, 1B, — B in probability for some

positive definite matrix K and B, where K, = 1" | X§7Q0; X5, and B, = Y7 | By,;B{ ;.

LEMMA 1:  Assume that Conditions (C.4) and (C.5) hold, there exist ag € R™* depending

on go, and a constant Cy depending only on | and Cy such that

sup |go(t) — 7% (H)ao| < Cyk;,".
te[0,1]
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The proof follows from Theorem 12.7 in Schumaker (2007).

LEMMA 2:  Assume that Conditions (C.1)-(C.3) hold. Then

V(¥ =) = N0, 57V, 501,

The proof can be obtained easily using standard method and is omitted here.
Proof of Theorem 1:
Let
P R Ki*(8 = Bo) |
& " Ho(o = a0) + k" H ' MTQ0X (B — Bo)
£ = (flT,EQT)T = 5(3,@), where H?2 = k,MTQoM. Then the doubly robust estimating

equation can be expressed as
Uen(1(§)) = ZD?Ai(ﬂi(f))zfl(Mi(f))hi(ui(f)a’AV)- (1)
i=1
Denote X; = Kgl/zXfT, M; = /fvlz/2H{17T;[, Ry = miao — go(t), and ¢ = Xi&y + Mibo + Rus,
then n;(0) = D0 = no; + G,i = 1,--- ,n, where ny; = X; 80 + go(t;). Let
K27 K PXTQoM (MT QM)

N =
0 kL2 -1

Then (1) can be written as

‘yl 7A
w5 = | O vvuee)

\112 (ﬂ(€)> P?)
Sy K X AT (1(€)) ST (1 (€)ha (1 (€), 5) )
Sk H AT (1 (€))7 (i (€) hi(1a(€), 7)

=2 DT (5a(€))37 (a(€))ha(14(), 9),

where ﬁi = (X;K];l/277rnglkj,rll/2)T'

Combining (C.8) and (C.9), both equations (1) and (2) give the same root for £ as our
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estimator. We denote

P "L
D4() £2 =1
ZD 8! e G )
The root éof (¢),
~ 51 - ~ T vw—1
E=| | =- Z{DiAO,iEO,i ho,i
& i=1

no P -
- [Z DonTonZla hod) 25 Gy i(0) }-
=1

is not an estimator. In the following, we will show that the difference between & and f is
small.

Let a € RPNk satisfying a’a = 1. Expand a7 ¥ (u(€),4) in a Taylor series and have

a"W(u(€),7) =a" W (p(no +¢), )

= Z a" DA (pi(no + €))55 " (pa(mo + )i (mo + €), 4)

i=1

n _ . n a X
= Z ClTDz‘AoT:iZ&%hi(Mo,i, ¥) + Z a’ D; A&Eo}a hi(po,is 7)Do,iGi

+ Z GG a (a” DiAG 5 ) hi(pto.: 7) + By (7, )

=: A+ Ay + As + Ay,

where Ry(4*,5) = Yoo, Ri(ut.4) and R5(ui,4) = SCTAT

(2

2 ~ —
s (@7 Dl () 557 (i) -

hi(p*, ) A G evaluated at pf = p(po; +7,¢) fori=1,--- ;nwith 0 <7 < 1.
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We first consider A; and expand it with respect to 7, then we have

i=1

i ~ 4 0 .
+ E @TDz‘AoT,iZo,}a_vhovi(V — %)
i=1

1. r 0 TA AT v—1 N
- _ DAL Sk (0.0, v (B —
+3 ;1 (¥ — ) 8787T[a 0120, Pi(o,i, 7)Y — 70)

=: A1+ A2+ As,

where v* are the point on the line between 4 and 7.
For A, 5, by conditions (C.1)-(C.3), we can obtain n'/2(§ — ) = _2;1(7171/2(;70) +0,(1).

Combining (C.7) and (C.8), we have

n B a n
_ TR AT -1 -1 1/2
Arg = —[;a Dilg %, %ho,i]xy ; G+ 0p(ky/?)
Note that |5 — 70| = Op(n™/2), then Ay 35 = 0,(ky*). Combining all these results, we can

get

n _ n _ 8
Ar =" Dy S thos = (T DG St hoi} 551Gl ook (9
i=1 =1

Now let us turn to consider A,. Similarly, applying Taylor expansion with respect to v, we

have
"N - 0
_ T T w1 .
Ay = ZZI a’ DAy By %hi(ﬂo,w ) AoiC

- ~ 0
= Z GTDz‘AoTiZSil—ho Do iGi
i=1 C O

- a ) - a * ~

=S DAL oo
=1

0,:0,s 8ILL
- i g[aTﬁz‘AoT'Eglihi(MOi ¥ oD’ €3 = )
— O N Opy v ’

. a ) N a * ~
+ ; a_y[aTDiAOTviEOja_mhi(”O’i’ 7)Ao, Ruil (5 — 70)

=: A1+ Az + Ass,
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where v* are the point on the line between 4 and 7.

According to conditions (C.7)-(C.9), the result that ||¥ — || = O,(n~*/?) and Lemma 1,

it can be obtained that Ay = Op(n~2k, ||€]]) = 0,(||€]]) and Ass = O,(ki/*™"). Then we

have

u 0
=> d"D; AOTZZoia hoioiGi + 0p(JIEI1) + 0p(Ky/?),

By similar derivation, we can show

E:CTqua (a” DN Z5 o + 0, (I€]) + 0,k

and

As= Ry (1" 0) + op([IEl]) + 0p(ky/*) = ZRm 15 70) + 0 (1€ + 0 (k).

Combining (3) and (4)-(6), we have

" W(p(6), ) =a" ¥ (u(no + €), )
= [a" DiASSg thos — {D a" DA S0 ) aa hoi} 25 Gl
— —

u 0
+ Z TD AOTZE(”la hO ZAO zgz

+ Z CTAOTZ o (a” DiAG 551 o

+ Ry (1", 70) + 0p(I€]) + 0 (/%)

Then
(). 3) — () =3 a DAL T D o — B )8,
) a 0,:770,¢ au 0,2 aﬂl 0,3 0,574
)
+§ TDA&ZO}(? ho Do R

+ Z CTAOTl o (" DiAY 25 o,

+ Ry (1", 70) + op([I€1]) + Op(kwlz/z)'
Then using the same argument as He et al. (2005), it can be shown that

sup W (u(8).5) — V() = Opl(ky/?),

€]l <Lkn/?

(4)
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for sufficiently large constant L.

By direct calculation,

Eé " Olhy).

Then we have

sup (&) =€l < sup [ W(€) — D) + [I€]l = O, (kL)
€l <Lk llgll<Lky/?

which indicates that sup ., 1/ W€ — ¢ < Lky* in probability, for sufficiently large
L. Thus, Brouwer’s fixed point theorem guarantees there exists a zero f of U(£) with
Hé | = Op(krl/ ?) and hence the optimal convergencerate of the estimator of the nonparametric
function can be achieved. Applying the central limit theorem on &;, the asymptotic normality

of the estimator of 3 can be established similarly.

3. Web Appendix C: Simulations for binary outcome
Consider a binary partial linear model as

In(piz /(1 = piz)) = XijBo + 0.5cos(wT;),
where 8y = 0.5, X;; and T;; are independently drawn from uniform distributions on (—0.8, 0.8)
and (—0.5,0.5) respectively, R;(p) is the correlation matrix of Y; considered to be AR1 with
correlation parameter p = 0.6. The correlated binary data are generated using the method
proposed in Preisser et al. (2002). The sample size is also n = 600 with m = 6.

The values of the indicators R;; are generated from a model similar to model (9) in the
study for continuous response except that the parameter vector (yp,7v1,72)7 is taken to be
(1.5,1.0,—1.0)T, which yields about 25% missingness.

Similarly, we consider 5 scenarios as in the study for continuous outcome. The only
difference is that in order to violate LCM assumption, we force an exchangeable working

correlation, i.e. a wrong correlation matrix, in S3 for the binary outcome. In S5, the missing

indicator R;; is generated from the model lnlfg__ = Y + 1Yij—1 + X + Y with
ij
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(Y0, 71,72, v3)T taken to be (1.5,1.0,—1.0,0.5)T. Note that we are not saying that LCM
holds under the simulated multivariate binary dataset. Instead, we are going to rely on the
approximate truth of the assumption, as Qu et al. (2010) have done in their simulation part.

The simulation results based on 500 replications is presented in Table 1 . Again the
proposed method shows its double robustness. When the LCM condition holds, it has a
comparable performance with Qu’s method; when the LCM assumption is violated but the
dropout model is correctly specified, it outperforms Qu’s method in terms of bias. Despite
of its larger standard error, as is expected, the proposed doubly robust method still yields
a slightly smaller MSE compared to Qu’s method. S5 shows that when MAR is violated,

estimates from the four methods all deviate from the truth.

[Table 1 about here.]
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Table 1
Simulation results for binary outcome
50 - 05

BIAS ESE SE MSE IMSE

GEE-C 0.0641 0.0678 0.0676 0.0087 0.0190
GEE-W 0.0184 0.0703 0.0700 0.0052 0.0123

S1 Qu 0.0167 0.0636 0.0645 0.0044 0.0106
DR-PLM 0.0167 0.0693 0.0692 0.0051 0.0118

GEE-C 0.0641 0.0678 0.0676 0.0087 0.0190
GEE-W 0.0622 0.0701 0.0695 0.0087 0.0121

S 2 Qu 0.0167 0.0636 0.0645 0.0044 0.0106
DR-PLM 0.0171 0.0679 0.0684 0.0050 0.0116

GEE-C 0.0705 0.0788 0.0773 0.0109 0.0246
GEE-W 0.0217 0.0819 0.0806 0.0070 0.0152

S 3 Qu 0.0389 0.0740 0.0757 0.0072 0.0131
DR-PLM 0.0197 0.0802 0.0809 0.0069 0.0146

GEE-C 0.0705 0.0788 0.0773 0.0109 0.0246
GEE-W 0.0696 0.0817 0.0800 0.0112 0.0151

S 4 Qu 0.0389 0.0740 0.0757 0.0072 0.0131
DR-PLM 0.0426 0.0795 0.0804 0.0083 0.0144

GEE-C 0.0907 0.0664 0.0670 0.0127 0.0295
GEE-W 0.0473 0.0683 0.0688 0.0070 0.0144

S5 Qu 0.0423 0.0624 0.0642 0.0059 0.0122
DR-PLM 0.0475 0.0676 0.0682 0.0069 0.0137

Note: SE: standard error; ESE: estimated standard error

from asymptotic theory; MSE: mean square error;
IMSE: integrated MSE; GEE-C: complete-case GEE;

GEE-W: IPW GEE; Qu: Qu’s method; DR-PLM: the proposed method.
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