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Web Appendix 1

1. Web Appendix A: Proof of the double robustness of the proposed estimator

Recall the proposed estimating equation

n∑
i=1

Ui =
n∑

i=1

{µ̇iΣ
−1
i Wi(Yi − µi) + µ̇iΣ

−1
i (Ii −Wi)Ẽ(Yi − µi)} = 0

When the LCM condition holds but the missing probability model is wrong,

E(Ui) =E


µ̇iΣ

−1
i



E(Yi1 − µi1|Xi)

E(Ri2

πi2
[Yi2 − µi2]|Ỹ 2

i , Xi) + E([1− Ri2

πi2
]E(Yi2 − µi2|Ỹ 2

i , Xi)|Ỹ 2
i , Xi)

...

E(Rim

πim
[Yim − µim]|Ỹ o

i , Xi) + E([1− Rim

πim
]E(Yim − µim|Ỹ m

i , Xi)|Ỹ m
i , Xi)





=E


µ̇iΣ

−1
i



E(Yi1 − µi1|Xi)

π∗
i2

πi2
E(Yi2 − µi2|Ỹ 2

i , Xi) + (1− π∗
i2

πi2
)E(Yi2 − µi2|Ỹ 2

i , Xi)

...

π∗
im

πim
E(Yim − µim|Ỹ m

i , Xi) + (1− π∗
im

πim
)E(Yim − µim|Ỹ m

i , Xi)





=E


µ̇iΣ

−1
i



E(Yi1 − µi1|Xi)

E(Yi2 − µi2|Ỹ 2
i , Xi)

...

E(Yim − µim|Ỹ m
i , Xi)




=E[µ̇iΣ

−1
i (Yi − µi)]

where π∗
im is the the propensity score for them-th observation given the observed covariates

Xi and response history Ỹ m
i . The consistency follows from the 0 expectation when regression

coefficients take the true value.



2 Biometrics, XXX 2015

When the missing probability model is correct but the LCM condition does not hold,

E(Ui) =E


µ̇iΣ

−1
i



E(Yi1 − µi1|Xi)

E(Ri2

πi2
[Yi2 − µi2]|Ỹ 2

i , Xi) + E([1− Ri2

πi2
]Ẽ(Yi2 − µi2)|Ỹ 2

i , Xi)

...

E(Rim

πim
[Yim − µim]|Ỹ o

i , Xi) + E([1− Rim

πim
]Ẽ(Yim − µim)|Ỹ m

i , Xi)





=E


µ̇iΣ

−1
i



E(Yi1 − µi1|Xi)

E(Yi2 − µi2|Ỹ 2
i , Xi) + 0

...

E(Yim − µim|Ỹ m
i , Xi) + 0





=E


µ̇iΣ

−1
i



E(Yi1 − µi1|Xi)

E(Yi2 − µi2|Ỹ 2
i , Xi)

...

E(Yim − µim|Ỹ m
i , Xi)




=E[µ̇iΣ

−1
i (Yi − µi)]

The consistency follows from the same reason as mentioned above.

2. Web Appendix B: Regularity conditions and proof of Theorem 1

We will show the asymptotic properties of the proposed estimator. To accommodate the

possible dependence between X and T , we assume the following relationship as Rice (1986):

Xijk = mk(Tij) + ϱijk, 1 6 i 6 n, 1 6 j 6 m, 1 6 k 6 p where the mk(·) are functions

with bounded rth derivatives and the ϱijk are independent random variables with mean

0 and are independent of the standardized responses. Let Λn be a N(= n × m) by p

matrix whose lth column is ϱl = (ϱ11l, · · · , ϱ1ml, · · · , ϱnml)
T . Recall that in Section 3, we

denote Σi = Σi(µi(θ)), ∆i = ∆i(µi(θ)), hi = hi(µi(θ), γ), X = (XT
1 , · · · , XT

n )
T with Xi =

(Xi1, · · · , Xim)
T , M = (MT

1 , · · · ,MT
n )

T with Mi = (πi1, · · · , πim)
T , Ω = diag{Ω1, · · · ,Ωn}
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with Ωi = ∆T
i Σ

−1
i E{ ∂

∂µi
hi}∆i, P = M(MTΩM)−1MTΩ, X∗ = (X∗T

1 , · · · , X∗T
n )T = (I −

P )X, Bi = X∗T
i ∆T

i Σ
−1
i hi − [

∑n
i=1X

∗T
i ∆T

i Σ
−1
i

∂
∂γ
hi(µi, γ)] · [ ∂

∂γ
Gγ(γ)]

−1Gγ,i(γ) and the nota-

tions Ω0,i represent Ωi evaluated at the true µ0,i and γ0. Notations B0,i and X∗
0,i are defined

in a similar fashion. Let ∥·∥ be the Euclidean norm. The regularity conditions as given as

follows:

(C.1) The parameter vector γ0 is an interior point of the parameter space Γ which is a

compact set.

(C.2) pij(γ) > c1 > 0 for all γ ∈ Γ, for some constant c1.

(C.3) 1
n

∂
∂γ
Gγ(γ0) and

1
n

∑n
i=1Gγ,i(γ0)G

T
γ,i(γ0) converges to Σγ and Vγ respectively in proba-

bility for some positive-definite matrix Σγ and Vγ.

(C.4) The rth derivative of g0 is bounded for some r > 2.

(C.5) The distinct values of {tij} form a quasi-uniform sequence that grows dense on [0, 1].

(C.6) There exists some ρ0 such that the estimate of covariance parameters satisfies
√
n(ρ̂−

ρ0) = Op(1).

(C.7) There exists positive constant c2 such that 0 < c2 6 ν(·) < ∞, ν(·) and µ(·) have

bounded second derivatives and third derivatives respectively.

(C.8) For sufficiently large n, kn(M
TΩ0M) is non-singular, and the eigenvalues of (kn/n)M

TΩ0M

are bounded away from zero and infinity in probability, where Ω0 = diag {Ω0,1, · · · ,Ω0,n}.

(C.9) EΛn = 0 and supn
1
n
E ∥Λn∥2 < ∞, and 1

n
Kn → K, 1

n
Bn → B in probability for some

positive definite matrixK and B, whereKn =
∑n

i=1X
∗T
0,iΩ0,iX

∗
0,i and Bn =

∑n
i=1B0,iB

T
0,i.

Lemma 1: Assume that Conditions (C.4) and (C.5) hold, there exist α0 ∈ RNk depending

on g0, and a constant C4 depending only on l and C0 such that

sup
t∈[0,1]

|g0(t)− πT (t)α0| 6 C4k
−r
n .
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The proof follows from Theorem 12.7 in Schumaker (2007).

Lemma 2: Assume that Conditions (C.1)-(C.3) hold. Then

√
n(γ̂ − γ0) → N(0,Σ−1

γ VγΣ
−1
γ ).

The proof can be obtained easily using standard method and is omitted here.

Proof of Theorem 1:

Let

ξ(β, α) =

 ξ1

ξ2

 =

 K
1/2
n (β − β0)

k
−1/2
n Hn(α− α0) + k

1/2
n H−1

n MTΩ0X(β − β0)

 ,

ξ̂ = (ξ̂T1 , ξ̂
T
2 )

T = ξ(β̂, α̂), where H2
n = knM

TΩ0M . Then the doubly robust estimating

equation can be expressed as

Uξ,n(µ(ξ)) =
n∑

i=1

DT
i ∆i(µi(ξ))Σ

−1
i (µi(ξ))hi(µi(ξ), γ̂). (1)

Denote X̃i = K
−1/2
n X∗T

i , M̃i = k
1/2
n H−1

n πT
i , Rni = πiα0 − g0(ti), and ζi = X̃iξ1 + M̃iξ2 +Rni,

then ηi(θ) = Diθ = η0,i + ζi, i = 1, · · · , n, where η0,i = Xiβ0 + g0(ti). Let

N =

 K
−1/2
n −K

−1/2
n XTΩ0M(MTΩ0M)−1

0 k
1/2
n H−1

n

 .

Then (1) can be written as

Ψ(µ(ξ), γ̂) =

 Ψ1(µ(ξ), γ̂)

Ψ2(µ(ξ), γ̂)

 = NUξ(µ(ξ))

=

 ∑n
i=1K

−1/2
n X∗T

i ∆T
i (µi(ξ))Σ

−1
i (µi(ξ))hi(µi(ξ), γ̂)∑n

i=1 k
1/2
n H−1

n πT
i ∆

T
i (µi(ξ))Σ

−1
i (µi(ξ))hi(µi(ξ), γ̂)


=

n∑
i=1

D̃i∆
T
i (µi(ξ))Σ

−1
i (µi(ξ))hi(µi(ξ), γ̂),

(2)

where D̃i = (X∗
i K

−1/2
N , πiH

−1
n k

1/2
n )T .

Combining (C.8) and (C.9), both equations (1) and (2) give the same root for ξ as our
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estimator. We denote

Φ(ξ) =

 Φ1(ξ)

Φ2(ξ)

 =

 ξ1

ξ2

+
n∑

i=1

{D̃i∆
T
0,iΣ

−1
0,ih0,i

− [
n∑

i=1

D̃i∆
T
0,iΣ

−1
0,i

∂

∂γ
h0,i]Σ

−1
γ Gγ,i(γ0)}.

The root ξ̃ of Φ(ξ),

ξ̃ =

 ξ̃1

ξ̃2

 =−
n∑

i=1

{D̃i∆
T
0,iΣ

−1
0,ih0,i

− [
n∑

i=1

D̃i∆
T
0,iΣ

−1
0,i

∂

∂γ
h0,i]Σ

−1
γ Gγ,i(γ0)}.

is not an estimator. In the following, we will show that the difference between ξ̃ and ξ̂ is

small.

Let a ∈ Rp+Nk satisfying aTa = 1. Expand aTΨ(µ(ξ), γ̂) in a Taylor series and have

aTΨ(µ(ξ), γ̂) =aTΨ(µ(η0 + ζ), γ̂)

=
n∑

i=1

aT D̃i∆
T
i (µi(η0 + ζ))Σ−1

i (µi(η0 + ζ))hi(µi(η0 + ζ), γ̂)

=
n∑

i=1

aT D̃i∆
T
0,iΣ

−1
0,ihi(µ0,i, γ̂) +

n∑
i=1

aT D̃i∆
T
0,iΣ

−1
0,i

∂

∂µi

hi(µ0,i, γ̂)∆0,iζi

+
n∑

i=1

ζTi ∆
T
0,i

∂

∂µi

(aT D̃i∆
T
0,iΣ

−1
0,i )hi(µ0,i, γ̂) +R∗∗

n (µ∗, γ̂)

= : A1 + A2 + A3 + A4,

where R∗∗
n (µ∗, γ̂) =

∑n
i=1R

∗∗
ni(µ

∗
i , γ̂) and R∗∗

ni(µ
∗
i , γ̂) = 1

2
ζTi ∆

T
i

∂2

∂µi∂µT
i
(aT D̃i∆i(µi)Σ

−1
i (µi) ·

hi(µ
∗, γ̂)∆iζi evaluated at µ∗

i = µ(µ0,i + τiζi) for i = 1, · · · , n with 0 < τi < 1.
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We first consider A1 and expand it with respect to γ, then we have

A1 =
n∑

i=1

aT D̃i∆
T
0,iΣ

−1
0,ih0,i

+
n∑

i=1

aT D̃i∆
T
0,iΣ

−1
0,i

∂

∂γ
h0,i(γ̂ − γ0)

+
1

2

n∑
i=1

(γ̂ − γ0)
T ∂

∂γ∂γT
[aT D̃i∆

T
0,iΣ

−1
0,ihi(µ0,i, γ

∗)](γ̂ − γ0)

= : A1,1 + A1,2 + A1,3,

where γ∗ are the point on the line between γ̂ and γ0.

For A1,2, by conditions (C.1)-(C.3), we can obtain n1/2(γ̂− γ0) = −Σ−1
γ (n−1/2Gγ0)+ op(1).

Combining (C.7) and (C.8), we have

A1,2 = −[
n∑

i=1

aT D̃i∆
T
0,iΣ

−1
0,i

∂

∂γ
h0,i]Σ

−1
γ

n∑
i=1

Gγ,i + op(k
1/2
n )

Note that ∥γ̂ − γ0∥ = Op(n
−1/2), then A1,3 = op(k

1/2
n ). Combining all these results, we can

get

A1 =
n∑

i=1

aT D̃i∆
T
0,iΣ

−1
0,ih0,i − {

n∑
i=1

aT D̃i∆
T
0,iΣ

−1
0,i

∂

∂γ
h0,i}Σ−1

γ Gγ,i] + op(k
1/2
n ). (3)

Now let us turn to consider A2. Similarly, applying Taylor expansion with respect to γ, we

have

A2 =
n∑

i=1

aT D̃i∆
T
0,iΣ

−1
0,i

∂

∂µi

hi(µ0,i, γ̂)∆0,iζi

=
n∑

i=1

aT D̃i∆
T
0,iΣ

−1
0,i

∂

∂µi

h0,i∆0,iζi

+
n∑

i=1

∂

∂γ
[aT D̃i∆

T
0,iΣ

−1
0,i

∂

∂µi

hi(µ0,i, γ
∗)∆0,iζi](γ̂ − γ0)

=
n∑

i=1

aT D̃i∆
T
0,iΣ

−1
0,i

∂

∂µi

h0,i∆0,iζi

+
n∑

i=1

∂

∂γ
[aT D̃i∆

T
0,iΣ

−1
0,i

∂

∂µi

hi(µ0,i, γ
∗)∆0,iD̃i

T
ξ](γ̂ − γ0)

+
n∑

i=1

∂

∂γ
[aT D̃i∆

T
0,iΣ

−1
0,i

∂

∂µi

hi(µ0,i, γ
∗)∆0,iRni](γ̂ − γ0)

= : A2,1 + A2,2 + A2,3,
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where γ∗ are the point on the line between γ̂ and γ0.

According to conditions (C.7)-(C.9), the result that ∥γ̂ − γ0∥ = Op(n
−1/2) and Lemma 1,

it can be obtained that A2,2 = Op(n
−1/2kn ∥ξ∥) = op(∥ξ∥) and A2,3 = Op(k

1/2−r
n ). Then we

have

A2 =
n∑

i=1

aT D̃i∆
T
0,iΣ

−1
0,i

∂

∂µi

h0,i∆0,iζi + op(∥ξ∥) + op(k
1/2
n ), (4)

By similar derivation, we can show

A3 =
n∑

i=1

ζTi ∆
T
0,i

∂

∂µi

(aT D̃i∆
T
0,iΣ

−1
0,i )h0,i + op(∥ξ∥) + op(k

1/2
n ), (5)

and

A4 = R∗∗
n (µ∗, γ0) + op(∥ξ∥) + op(k

1/2
n ) =

n∑
i=1

R∗
ni(µ

∗
i , γ0) + op(∥ξ∥) + op(k

1/2
n ). (6)

Combining (3) and (4)-(6), we have

aTΨ(µ(ξ), γ̂) =aTΨ(µ(η0 + ζ), γ̂)

=
n∑

i=1

[aT D̃i∆
T
0,iΣ

−1
0,ih0,i − {

n∑
i=1

aT D̃i∆
T
0,iΣ

−1
0,i

∂

∂γ
h0,i}Σ−1

γ Gγ,i]

+
n∑

i=1

aT D̃i∆
T
0,iΣ

−1
0,i

∂

∂µi

h0,i∆0,iζi

+
n∑

i=1

ζTi ∆
T
0,i

∂

∂µi

(aT D̃i∆
T
0,iΣ

−1
0,i )h0,i

+R∗∗
n (µ∗, γ0) + op(∥ξ∥) + op(k

1/2
n ).

Then

aT (Ψ(µ(ξ), γ̂)− Φ(ξ)) =
n∑

i=1

aT D̃i∆
T
0,iΣ

−1
0,i [

∂

∂µi

h0,i − E(
∂

∂µi

h0,i)]∆0,iD̃i
T
ξ

+
n∑

i=1

aT D̃i∆
T
0,iΣ

−1
0,i

∂

∂µi

h0,i∆0,iRni

+
n∑

i=1

ζTi ∆
T
0,i

∂

∂µi

(aT D̃i∆
T
0,iΣ

−1
0,i )h0,i

+R∗∗
n (µ∗, γ0) + op(∥ξ∥) + op(k

1/2
n ).

Then using the same argument as He et al. (2005), it can be shown that

sup
∥ξ∥6Lk

1/2
n

|Ψ(µ(ξ), γ̂)−Ψ(ξ)∥ = Op(k
1/2
n ),
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for sufficiently large constant L.

By direct calculation,

E
∥∥∥ξ̃∥∥∥2

= O(kn).

Then we have

sup
∥ξ∥6Lk

1/2
n

∥Ψ(ξ)− ξ∥ 6 sup
∥ξ∥6Lk

1/2
n

∥Ψ(ξ)− Φ(ξ)∥+ ˜∥ξ∥ = Op(k
1/2
n ),

which indicates that sup∥ξ∥6Lk
1/2
n

∥Ψ(ξ)− ξ∥ 6 Lk
1/2
n in probability, for sufficiently large

L. Thus, Brouwer’s fixed point theorem guarantees there exists a zero ξ̂ of Ψ(ξ) with

ˆ∥ξ∥ = Op(k
1/2
n ) and hence the optimal convergencerate of the estimator of the nonparametric

function can be achieved. Applying the central limit theorem on ξ̃1, the asymptotic normality

of the estimator of β̂ can be established similarly.

3. Web Appendix C: Simulations for binary outcome

Consider a binary partial linear model as

ln(µij/(1− µij)) = Xijβ0 + 0.5cos(πTij),

where β0 = 0.5,Xij and Tij are independently drawn from uniform distributions on (−0.8, 0.8)

and (−0.5, 0.5) respectively, Ri(ρ) is the correlation matrix of Yi considered to be AR1 with

correlation parameter ρ = 0.6. The correlated binary data are generated using the method

proposed in Preisser et al. (2002). The sample size is also n = 600 with m = 6.

The values of the indicators Rij are generated from a model similar to model (9) in the

study for continuous response except that the parameter vector (γ0, γ1, γ2)
T is taken to be

(1.5, 1.0,−1.0)T , which yields about 25% missingness.

Similarly, we consider 5 scenarios as in the study for continuous outcome. The only

difference is that in order to violate LCM assumption, we force an exchangeable working

correlation, i.e. a wrong correlation matrix, in S3 for the binary outcome. In S5, the missing

indicator Rij is generated from the model ln
pij

1−pij
= γ0 + γ1Yi,j−1 + γ2Xij + γ3Yij with
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(γ0, γ1, γ2, γ3)
T taken to be (1.5, 1.0,−1.0, 0.5)T . Note that we are not saying that LCM

holds under the simulated multivariate binary dataset. Instead, we are going to rely on the

approximate truth of the assumption, as Qu et al. (2010) have done in their simulation part.

The simulation results based on 500 replications is presented in Table 1 . Again the

proposed method shows its double robustness. When the LCM condition holds, it has a

comparable performance with Qu’s method; when the LCM assumption is violated but the

dropout model is correctly specified, it outperforms Qu’s method in terms of bias. Despite

of its larger standard error, as is expected, the proposed doubly robust method still yields

a slightly smaller MSE compared to Qu’s method. S5 shows that when MAR is violated,

estimates from the four methods all deviate from the truth.

[Table 1 about here.]
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Table 1
Simulation results for binary outcome

β0 = 0.5
BIAS ESE SE MSE IMSE

GEE-C 0.0641 0.0678 0.0676 0.0087 0.0190
GEE-W 0.0184 0.0703 0.0700 0.0052 0.0123

S 1 Qu 0.0167 0.0636 0.0645 0.0044 0.0106
DR-PLM 0.0167 0.0693 0.0692 0.0051 0.0118

GEE-C 0.0641 0.0678 0.0676 0.0087 0.0190
GEE-W 0.0622 0.0701 0.0695 0.0087 0.0121

S 2 Qu 0.0167 0.0636 0.0645 0.0044 0.0106
DR-PLM 0.0171 0.0679 0.0684 0.0050 0.0116

GEE-C 0.0705 0.0788 0.0773 0.0109 0.0246
GEE-W 0.0217 0.0819 0.0806 0.0070 0.0152

S 3 Qu 0.0389 0.0740 0.0757 0.0072 0.0131
DR-PLM 0.0197 0.0802 0.0809 0.0069 0.0146

GEE-C 0.0705 0.0788 0.0773 0.0109 0.0246
GEE-W 0.0696 0.0817 0.0800 0.0112 0.0151

S 4 Qu 0.0389 0.0740 0.0757 0.0072 0.0131
DR-PLM 0.0426 0.0795 0.0804 0.0083 0.0144

GEE-C 0.0907 0.0664 0.0670 0.0127 0.0295
GEE-W 0.0473 0.0683 0.0688 0.0070 0.0144

S 5 Qu 0.0423 0.0624 0.0642 0.0059 0.0122
DR-PLM 0.0475 0.0676 0.0682 0.0069 0.0137

Note: SE: standard error; ESE: estimated standard error

from asymptotic theory; MSE: mean square error;

IMSE: integrated MSE; GEE-C: complete-case GEE;

GEE-W: IPW GEE; Qu: Qu’s method; DR-PLM: the proposed method.


